Towards Topologically Diverse Probabilistic Planning Benchmarks

lundi, 15 juil. 2024·
Jaël Champagne Gareau
Jaël Champagne Gareau
,
Éric Beaudry
,
Vladimir Makarenkov
Résumé
Markov Decision Processes (MDPs) are often used in Artificial Intelligence to solve probabilistic sequential decision-making problems. In the last decades, many probabilistic planning algorithms have been developed to solve MDPs. However, the lack of standardized benchmarks makes it difficult to compare the performance of these algorithms in different contexts. In this paper, we identify important topological properties of MDPs that can make a significant impact on the relative performance of probabilistic planning algorithms. We also propose a new approach to generate synthetic MDP domains having different topological properties. This approach relies on the connection between MDPs and graphs and allows every graph generation technique to be used to generate synthetic MDP domains.
Type
Publication
Proceedings of the International Federation of Classification Societies Conference
publications
Jaël Champagne Gareau
Auteurs
Chercheur postdoctoral en informatique
Je suis actuellement chercheur postdoctoral en informatique à l’Université TÉLUQ, où mes travaux portent sur l’accélération de la conversion de nombres entiers et flottants en chaînes de caractères décimales. Au cours de mon doctorat, j’ai conçu des algorithmes et des structures de données exploitant l’architecture moderne des ordinateurs afin de résoudre de grandes instances de processus décisionnels de Markov (MDP). Durant ma maîtrise, j’ai développé des algorithmes de planification d’itinéraires pour véhicules électriques, visant à déterminer le chemin optimal entre deux points tout en minimisant le temps total du trajet (déplacement, recharge et attente aux bornes).

Citation