pcTVI: Parallel MDP Solver Using a Decomposition Into Independent Chains

mardi, 19 juil. 2022·
Jaël Champagne Gareau
Jaël Champagne Gareau
,
Éric Beaudry
,
Vladimir Makarenkov
Résumé
Markov Decision Processes (MDPs) are useful to solve real-world probabilistic planning problems. However, finding an optimal solution in an MDP can take an unreasonable amount of time when the number of states in the MDP is large. In this paper, we present a way to decompose an MDP into Strongly Connected Components (SCCs) and to find dependency chains for these SCCs. We then propose a variant of the Topological Value Iteration (TVI) algorithm, called parallel chained TVI (pcTVI), which is able to solve independent chains of SCCs in parallel leveraging modern multicore computer architectures. The performance of our algorithm was measured by comparing it to the baseline TVI algorithm on a new probabilistic planning domain introduced in this study. Our pcTVI algorithm led to a speedup factor of 20, compared to traditional TVI (on a computer having 32 cores).
Type
Publication
Proceedings of the International Federation of Classification Societies Conference
publications
Jaël Champagne Gareau
Auteurs
Chercheur postdoctoral en informatique
Je suis actuellement chercheur postdoctoral en informatique à l’Université TÉLUQ, où mes travaux portent sur l’accélération de la conversion de nombres entiers et flottants en chaînes de caractères décimales. Au cours de mon doctorat, j’ai conçu des algorithmes et des structures de données exploitant l’architecture moderne des ordinateurs afin de résoudre de grandes instances de processus décisionnels de Markov (MDP). Durant ma maîtrise, j’ai développé des algorithmes de planification d’itinéraires pour véhicules électriques, visant à déterminer le chemin optimal entre deux points tout en minimisant le temps total du trajet (déplacement, recharge et attente aux bornes).

Citation