Fast and optimal branch-and-bound planner for the grid-based coverage path planning problem based on an admissible heuristic function

vendredi, 27 janv. 2023·
Jaël Champagne Gareau
Jaël Champagne Gareau
,
Éric Beaudry
,
Vladimir Makarenkov
Résumé
This paper introduces an optimal algorithm for solving the discrete grid-based coverage path planning (CPP) problem. This problem consists in finding a path that covers a given region completely. First, we propose a CPP-solving baseline algorithm based on the iterative deepening depth-first search (ID-DFS) approach. Then, we introduce two branch-and-bound strategies (Loop detection and an Admissible heuristic function) to improve the results of our baseline algorithm. We evaluate the performance of our planner using six types of benchmark grids considered in this study: Coast-like, Random links, Random walk, Simple-shapes, Labyrinth and Wide-Labyrinth grids. We are first to consider these types of grids in the context of CPP. All of them find their practical applications in real-world CPP problems from a variety of fields. The obtained results suggest that the proposed branch-and-bound algorithm solves the problem optimally (i.e., the exact solution is found in each case) orders of magnitude faster than an exhaustive search CPP planner. To the best of our knowledge, no general CPP-solving exact algorithms, apart from an exhaustive search planner, have been proposed in the literature.
Type
Publication
Frontiers in Robotics and AI
publications
Jaël Champagne Gareau
Auteurs
Chercheur postdoctoral en informatique
Je suis actuellement chercheur postdoctoral en informatique à l’Université TÉLUQ, où mes travaux portent sur l’accélération de la conversion de nombres entiers et flottants en chaînes de caractères décimales. Au cours de mon doctorat, j’ai conçu des algorithmes et des structures de données exploitant l’architecture moderne des ordinateurs afin de résoudre de grandes instances de processus décisionnels de Markov (MDP). Durant ma maîtrise, j’ai développé des algorithmes de planification d’itinéraires pour véhicules électriques, visant à déterminer le chemin optimal entre deux points tout en minimisant le temps total du trajet (déplacement, recharge et attente aux bornes).

Citation