Fast and optimal branch-and-bound planner for the grid-based coverage path planning problem based on an admissible heuristic function
Résumé
This paper introduces an optimal algorithm for solving the discrete grid-based
coverage path planning (CPP) problem. This problem consists in finding a path
that covers a given region completely. First, we propose a CPP-solving
baseline algorithm based on the iterative deepening depth-first search
(ID-DFS) approach. Then, we introduce two branch-and-bound strategies (Loop
detection and an Admissible heuristic function) to improve the results of our
baseline algorithm. We evaluate the performance of our planner using six
types of benchmark grids considered in this study: Coast-like, Random links,
Random walk, Simple-shapes, Labyrinth and Wide-Labyrinth grids. We are first
to consider these types of grids in the context of CPP. All of them find their
practical applications in real-world CPP problems from a variety of fields.
The obtained results suggest that the proposed branch-and-bound algorithm
solves the problem optimally (i.e., the exact solution is found in each case)
orders of magnitude faster than an exhaustive search CPP planner. To the best
of our knowledge, no general CPP-solving exact algorithms, apart from an
exhaustive search planner, have been proposed in the literature.
Type
Publication
Frontiers in Robotics and AI

Auteurs
Chercheur postdoctoral en informatique
Je suis actuellement chercheur postdoctoral en informatique à l’Université
TÉLUQ, où mes travaux portent sur l’accélération de la conversion de nombres
entiers et flottants en chaînes de caractères décimales. Au cours de mon
doctorat, j’ai conçu des algorithmes et des structures de données exploitant
l’architecture moderne des ordinateurs afin de résoudre de grandes instances
de processus décisionnels de Markov (MDP). Durant ma maîtrise, j’ai développé
des algorithmes de planification d’itinéraires pour véhicules électriques,
visant à déterminer le chemin optimal entre deux points tout en minimisant
le temps total du trajet (déplacement, recharge et attente aux bornes).
Auteurs
Auteurs