Cache-Efficient Memory Representation of Markov Decision Processes

lundi, 30 mai 2022·
Jaël Champagne Gareau
Jaël Champagne Gareau
,
Éric Beaudry
,
Vladimir Makarenkov
Résumé
Research in automated planning typically focuses on the development of new or improved algorithms. Yet, an equally important but often overlooked topic is that of how to actually implement these algorithms efficiently. In this study, we are making an attempt to close this gap in the context of optimal Markov Decision Process (MDP) planning. Precisely, we present a novel cache-efficient memory representation of MDPs, which we call CSR-MDP, that takes advantage of low-level hardware features such as memory hierarchy. We evaluate the speed improvement provided by our memory representation by comparing the performance of CSR-MDP with the performance obtained by traditional MDP representation. We show that by using our CSR-MDP memory representation, existing MDP solvers, including VI, LRTDP and TVI, are able to find an optimal policy an order of magnitude faster.
Type
Publication
Proceedings of the Canadian Conference on Artificial Intelligence
publications
Jaël Champagne Gareau
Auteurs
Chercheur postdoctoral en informatique
Je suis actuellement chercheur postdoctoral en informatique à l’Université TÉLUQ, où mes travaux portent sur l’accélération de la conversion de nombres entiers et flottants en chaînes de caractères décimales. Au cours de mon doctorat, j’ai conçu des algorithmes et des structures de données exploitant l’architecture moderne des ordinateurs afin de résoudre de grandes instances de processus décisionnels de Markov (MDP). Durant ma maîtrise, j’ai développé des algorithmes de planification d’itinéraires pour véhicules électriques, visant à déterminer le chemin optimal entre deux points tout en minimisant le temps total du trajet (déplacement, recharge et attente aux bornes).

Citation