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Figure 1: An electric vehicle charging at a public level 2 station in Montreal

ABSTRACT
In the last few years, several studies have considered different vari-

ants of the Electric Vehicle Journey Planning (EVJP) problem that

consists in finding the shortest path (according to time) between

two given points, passing by several charging stations and respect-

ing the range of the vehicle. The total time taken by the vehicle

is the sum of the driving time, the charging time and the waiting

time. Unfortunately, the consideration of the waiting time has been

neglected by previous studies. This study aims to fill this gap by

introducing: (1) a graph relabeling technique using a probabilis-

tic model of charging station occupancy generated using real EV

stations data; (2) an alternative paths generation technique which

accounts for worse than expected waiting time at various charging

stations. Our empirical results indicate that the a priori considera-
tion of charging station occupancy by graph relabeling can reduce
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the waiting time by more than 75%, while having a negligible im-

pact on the driving time, and that the generation of alternative

paths helps reduce the waiting (and total) time even more. For our

public station network dataset and the current station occupancy

(for now quite low), the mean total journey time (computed over

1000 requests) decreased by 17.3 minutes when our new technique

was used.
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1 INTRODUCTION
Electric vehicles (EVs) are an attractive alternative to fossil-fuel

vehicles to reduce greenhouse gas emissions. However, their limited

range and their high charging time represent a major obstacle to

their massive adoption. Moreover, long journeys require careful

planning to determine the charging stations to be used in order

to avoid running out of energy. For example, today (year 2019),

affordable EVs have an average range of around 250 km. This limited

range implies the need to make recharging stops many times on

long journeys.

EV journey planning (EVJP) is a complex problem which can-

not be effectively solved by conventional approaches. Indeed, EV

planners need to take into account not only various driving factors

applicable to conventional vehicles (the wind, the energy needed

to fight the air resistance relative to the speed, the traffic, eventual

detours, etc.), but also factors specific to EVs, such as the level of

charging stations (which influences the charging speed), the non-

linearity of the charging curve of the battery, the topography of

the map (EVs can recover some energy when moving downhill),

the probability of the stations’ occupancy as well as the expected

waiting time at the charging stations.

While many of these factors have been addressed by previous

studies, very few of them have considered the waiting time in the

objective function tominimize. This factor is increasingly important

because in many countries, the number of EVs on the road increases

faster than the number of charging stations [6, 15, 17]. The waiting

time will thus probably continue to increase at the majority of the

stations for some time.

This paper proposes some improvements to EV planning tech-

niques by considering expected waiting time at charging stations.

Our first contribution is the construction of a probabilistic model

to predict waiting time at each charging station and its integration

in the planning algorithm using dynamic edge relabeling. This im-

provement allows the planner to optimize the total journey time by

considering a trade-off between more driving time and less waiting

time. Our second contribution is to take into account alternative

paths which are dynamically chosen during the journey. Indeed,

while executing the plan, the real-time occupancy data might sug-

gest a waiting time which is worse than what was initially expected.

If this happens, it is advantageous to have alternative paths at our

disposition. We therefore propose an alternative paths generation

mechanism to account for worse than expected charging station

occupancy. To the best of our knowledge, this is also the first study

that quantifies the time saving of considering the waiting time

when using real data on charging station placement and occupancy

(the existing approaches considering the waiting time use artificial

grid networks and artificial probabilities of station occupancy).

The remainder of the paper is structured as follows. In Section 2,

existing studies related to the various EV planning problems are

presented. In Section 3, a mathematical formulation of the EVJP

and a basic algorithm to solve the problem (on which we base

our techniques) are presented. Sections 4 and 5 then describes the

proposed methods to account for the waiting time in the planner.

Finally, Sections 6 and 7 present the evaluation of our methods

(testing methodology and results) and the conclusion, respectively.

2 RELATEDWORK
An EV planning framework taking into account the possibility

that the battery recharges itself during a journey (through braking

or potential energy loss) already exists [16]. This framework also

considers other factors which may influence energy expenditure,

including the speed limit on each road segment, the mass of the

vehicle and occupants, the air resistance coefficient, etc. However, it

does not take into account the possibility of using charging stations

to charge at an intermediary node along the path. This problem is

usually called EV path planning (EVPP). The algorithm used is a

variant of A* [10], called Energy-A*. It uses a consistent heuristic
h = c+c̃ , where c is a combination of the potential energy difference

between the current node and the goal, including the energy loss in-

herent to the displacement, and c̃ represents the battery constraints.
No pre-calculation is possible in this model since the energy cost

of each edge may depend on data specific to each request. This

method makes it possible to find a solution in O(n logn) (where n
is the number of nodes). Similar results have been found [7].

Many studies have extended the aforementioned EVPP technique

to solve some generalized instances of the original problem. Many

of them have extended the problem by considering the possibility of

using charging stations to charge the battery if the range is not suffi-

cient to directly go from the departure to the arrival point [1]; some

of them using techniques based on dynamic programming [19].

One of their weaknesses is that they do not consider the inherent

uncertainty of the problem and, in particular, the probability of

occupancy and the expected waiting time at every charging station.

The possibility of recharging partially at charging stations has

been studied by using the formalism called State of charge [2]. This
approach considers different possible states of charge and optimizes

them for the best possible choice (e.g., it might be advantageous to

recharge partially if the next part of the journey goes downhill).

Different factors affecting the EVs energy consumption have also

been studied [21]. For example, the effect of the road gradient [14]

(which impacts linearly the energy consumption) and the effect of

the ambient temperature [4, 13] (which affects linearly between

−15◦C and 20
◦
C the capacity of an electric vehicle battery). As

an example of the temperature impact on the battery, the Nissan

Leaf has a range that varied from about 50 km to about 165 km,

depending on the temperature.

Recently, some studies have started to take into account the

waiting time [12, 18]. The former work focuses on EV routing to

deliver multiple packages in an optimal order, starting and ending

at a depot (similar to the traveling salesman problem (TSP), but

considering the EV range and charging stations). This problem is

called EVRP-MRUA (EV routing problemwithmid-route recharging

and uncertain availability). This research models the problem using

a Markov Decision Process (MDP) that aims to minimize the cost

for the operator of an EV fleet and the global time to deliver all the

packages.

The latter work focuses on a problem which is more closely

related to our problem (i.e., path-planning for a single EV going

from a departure node to an arrival node while respecting the range

of the EV, and considering the waiting time and the uncertainty

related to the availability of EV charging stations). The authors first

described some efficient algorithms to find an optimal recharging
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policy (how long to charge at every station) for a given path, then

extended these algorithms to find an a priori optimal routing and

recharging strategy (also using MDP). The graph considered had a

charging station at each of its nodes. The optimal policy (including

the path and the charging policy on that path) was computed in

O(n4), where n is the number of nodes (i.e., charging stations) in

the network. Heuristics were used to reduce the size of the problem.

In that model, the availability of charging stations was known

only when the EV was arriving at a given station. The evaluation

of this technique was done on a grid of 500 × 500 nodes, with a

common distance of 5 miles between every pair of adjacent nodes.

The probability of occupancy and waiting time at each station were

generated randomly using uniform distributions.

3 ELECTRIC VEHICLES JOURNEY PLANNING
This section defines formally the EVJP problem and presents a base-

line planner that solves the problem optimally when considering

the driving and charging time, but without considering the waiting

time (i.e., assuming waiting time is inexistent). This baseline will be

used as a base to which we will add the two proposed techniques.

It will also be used in the evaluation of our novel techniques to

measure the average time reduction when considering the waiting

time.

3.1 Problem Formulation
Definition 1. A road networkM is modeled by a tuple (V , E, λ, µ, S),
where (V , E) is a digraph and λ, µ are two labelings of the edges.

More specifically:

• V is the set of nodes (latitude, longitude) considered on the

map;

• E is the set of road segments (edges);

• λ : E → R+ gives the length (in m) of every edge;

• µ : E → R+ gives the expected speed (in m/s) at every edge;

• S is the set of all charging stations.

We associate every charging station s ∈ S with the nearest vertex

vs ∈ V .

Remark. The λ and µ labeling can be used to define a labeling

giving the expected time to cross an edge (i.e., using edges repre-

senting time instead of distances in the graph). Both formulations

are equivalent.

The µ labeling can be based on empirical data on the average

speed of the vehicles on every edge, or can simply be set to the

maximum allowed speed of each road segment. We now formally

define an EV journey planning problem and define its solution

formulation:

Definition 2. An EVJP problem is defined by the tuple (M, ρ,α,ω),
where

• M is the road network;

• ρ ∈ R+ is the range of the EV;
• α,ω ∈ V are the departure and arrival nodes.

Remark. It is possible to generalize it to the case where α,ω < V
by using a KD-Tree to find the nearest corresponding node in the

graph.

Definition 3. A solution of the EVJP problem (M, ρ,α,ω) is a tuple
(P,Q), where

• P is a finite sequence of k + 1 nodes ⟨P0, P1, . . . , Pk ⟩ (where
Pi ∈ V );

• Q is a subsequence ⟨Pi0 , . . . , Pib+1 ⟩ ⊆ P containing the b
used charging station in the solution, and containing α and

ω;
• Pi0 = P0 = α ;
• Pib+1 = Pk = ω;

• ∀j ∈ {0, 1, . . . ,b}, dg(Q j ,Q j+1)
1 ≤ ρ (i.e., every consecutive

node in Q are at a distance which is smaller than or equal to

the range ρ).

In other words, P is the sequence of nodes by which the EV

needs to travel according to the solution, and Q is a subsequence

of P containing the charging stations which need to be used in the

journey (as well as α and ω).
Our objective is to find a solution to the EVJP problem that

minimizes the total time of the journey from α to ω, including
the driving time, the charging time and the waiting time. This is

formalized in the next definition.

Definition 4. An optimal solution to EVJP is a solution (P,Q), as
stated in Definition 3, minimizing the following objective function:

Z(P,Q) = DT(P) + CT(Q) +WT(Q),

where DT, CT and WT are respectively the expected driving time,

charging time and waiting time. They are given by:

DT(P) =
k−1∑
i=0

λ(Pi , Pi+1)

µ(Pi , Pi+1)
,

CT(Q) =
b∑
i=1

ECT(Qi ),

where ECT(Qi ) is the expected charging time at the station Qi
when considering states of charge [2] and the station level (e.g., a

220VAC or a 400VCC station).

3.2 Base Planner
We now present the base planner we will use as a baseline in the

tests. First, the distance between each pair of charging stations

is pre-computed and stored in a matrix D = (Di j ), where Di j =

dg(si , sj ). We also store the optimal path between each of these

stations for further use.

Next, for every request, we build a simplified graph (s-graph)

(V ′, E ′) containing only the nodes associated with the charging sta-

tions as well as the nodes of departure and arrival (V ′ = S ∪ {α,ω}).
Edges with weights corresponding to the pre-calculated distances

are added to this new graph between every pair of charging stations.

Dijkstra’s algorithm [5] is then used twice (the first time from the

starting point, and the second time from the arrival point, on the

reversed graph) to add edges from the departure to every charg-

ing stations and from every charging stations to the arrival. The

computations for this step can be accelerated by using contraction

hierarchies [9]. The two executed Dijkstra passes can also be run in

1
dg(A, B) is the distance in the graph between A and B
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parallel. The new graph we obtain is a complete graph, from which

we remove every edge whose length is larger than the EV range.

With this simplified graph, we execute the A* algorithm (using

the Great-circle distance as heuristic) from α to ω, which is enough

to get a sequence Q as specified in Definition 3. This sequence

satisfies the last part of the definition (the EV range constraint)

insofar as every intermediary node is a charging station. Conse-

quently, there is no need to consider the range of the vehicle at this

point. The sequence P can then be found using the data from the

previously computed paths from the two Dijkstra passes on the

original graph and from the pre-calculation of the path between

every pair of charging stations.

The pseudo-code of this base planner is shown in Algorithm 1.

Algorithm 1 Base planner algorithm

1: Compute the matrix D and the optimal path between every

pair of stations

2: Construct the s-graph containing every charging station

3: for all request (α,ω, ρ) do
4: Run Dijkstra from α on the original graph

5: Run Dijkstra from ω on the reversed original graph

6: Add α and ω to the s-graph and add edges with length ≤ ρ
7: Run the A* algorithm on the s-graph from α to ω to find

the sequence Q
8: Find the sequence P from Q using all computed paths

9: end for

Remark. We make some assumptions in this work to keep the pre-

sentation clutter-free and stay focused strictly on the consideration

of expected waiting time and real-time occupancy. However, many

of these assumptions can be easily removed by slightly modifying

the base planner. For example, we assume the initial EV charge

at α to be full (i.e., = ρ), but this assumption can be removed by

simply modifying the weight of the out-edges of α . The charging
model of the battery and a remaining charge variable could also be

easily incorporated in our model allowing one to consider partial

recharge and the non-linearity of the battery’s charging curve.

Let n = |V | andm = |E |. The execution of a request using this

base planner has a time complexity of O(n logn +m) time, i.e., the

same complexity as Dijkstra’s algorithm (when implemented with

a Fibonacci heap [8]). In a real world road network, the maximum

degree of a node is bounded by a small number (based on the lowest

number of road intersections possible at any given node). This

implies that we can reduce the time complexity of the algorithm to

O(n logn).

Remark. Many other studies consider that α,ω ∈ S and suppose

the simplified graph is given in input. If it is the case, note that

the two Dijkstra passes are unnecessary, and the time complexity

becomes simply O(|S | log |S |).

4 GRAPH RELABELING
Since minimizing the waiting time is done by going to a charging

station that might require a detour from the optimal path (thus

increasing the driving time), we need to find the optimal trade-off

between the waiting time and the driving time.

To consider the waiting time and find the optimal trade-off, the

planner needs some a priori information about the probability of

occupancy and the expected waiting time at every charging station

(which depends on the day of the week, the time of the day, etc.).

To get this information, we need historic data at every station. We

assume these data are available and can be used to generate a family

of functions that give the probability of occupancy and the expected

waiting time at every hour and day. The following definition makes

this more precise:

Definition 5. for every station s ∈ S , the a priori probability of
occupancy at station s is given by

fs : {Monday, . . . , Sunday} × {0..23} → [0, 1]

(d,h) 7→ P(s is occupied | Day = d ∧ Hour = h).

and the expected waiting time is given by

дs : {Monday, . . . , Sunday} × {0..23} → R+

The numbers дs (d,h) can be seen as being the mean service time

in a waiting queue (normally denoted
1

µ in queueing theory). In

other words, the time of service corresponds to a time-dependent

(i.e., non-homogeneous) exponential distribution. In our model,

we consider the a priori mean waiting time instead of a complete

waiting queue formalism. We did so because the information about

the real-time presence of a waiting line at an EV station is not

known in the majority of EV stations network (including the one

we used in our tests). That being said, the дs functions could be

easily modified to consider such waiting queues.

Remark. Of course, the model can easily be refined by considering

smaller time intervals. We chose one hour as the interval because

we didn’t have enough historic data to run our tests on smaller

intervals while keeping a reasonable variance.

We now adapt the base planner presented in Section 3.2 to con-

sider the { fs } and {дs } function families in order to minimize the

mean waiting time.

In addition to the edge labeling given by the mapping λ, we
define another edge labeling ξ that considers the length of the path

(like λ), while also considering the expected waiting time.

Definition 6. Let e = (u,v) ∈ E. The labeling

ξ : E × {Monday, . . . , Sunday} × {0..23} → R+

is given by

ξ (e,d,h) =

{
λ(e) if u < S

λ(e) + fu (d,h) · дu (d,h) · µ(e) if u ∈ S

i.e., ξ corresponds to the labeling λ to which a virtual distance
equivalent to the expected waiting time at s , if arriving at time

(d,h), is added.

Remark. Equivalently, instead of adding a value proportional to the
waiting time on every out-edges, we could have added a weight on

the nodes and modified A* consequently. We chose to modify edges

instead of adding node weight because it seems more frequent in

the literature. Moreover, time-dependent edges formalism can be

used for many other path planning related consideration, like traffic

or weather.
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Since we now use a time-dependent labeling, and the time (d,h)
when arriving at a station s is unknown before starting the search

algorithm, the base planner (Algorithm 1) must be modified by

adapting the call to the A* algorithm on line 7. A survey of possible

modifications to well-known path planning techniques allowing

the consideration of time-dependent edges is presented in [3]. We

use A* in the same way that Dijkstra’s algorithmwas adapted in this

survey. In summary, when a node s ∈ S of the s-graph is extracted

out of the priority queue, the shortest path to s has been found, so

the time when arriving at s is known (the initial time of departure

plus the time of travel from α to s , including, when applicable, the

waiting and the charging time). Hence, the labeling ξ (e,d,h) of
every out-edge e = (s,v) of s can be determined and A* can add

every out-neighbor of s to the priority queue and continue as it

normally does.

Remark. The aforementioned modification to the planner only

adds a constant number of operations to every iteration of the A*

algorithm. Consequently, the running time of our planner remains

O(n logn).

5 ALTERNATIVE PATHS GENERATION
As we will see in Section 6, the modification to the planner made

in the previous section decreases a lot the average waiting time.

However, it is only based on a priori probability of occupancy and

a priori waiting time. If, by misfortune, the real-time probability

of occupancy is worse than what was assumed, it would be advan-

tageous to have an online planner which takes advantage of this

information. In this section, we propose to consider this by pre-

computing, for every station in the Q sequence, an alternative path

passing by alternative charging station(s) which could be chosen

by the planner at runtime if our first charging station choice is

unavailable when we arrive at a branching node. The branching

node is chosen to be the last common node between the base path

and the new alternative path.

α s1 s2 s3 ω

c11

c21 c22

•
b1

•
b2

Figure 2: Alternative path generation

Graphically, we can illustrate the situation we are looking for

as in Figure 2. In this figure, the middle path Q = (α, s1, s2, s3,ω) is
the path obtained by the method in Section 4, while the upper path

(respectively the lower path) is an alternative path that could be

taken if s1 (respectively s2) is occupied at runtime, even though the

a priori probability of occupancy would be low. The node ci j is the

jth charging station on the ith alternative path (the path that will

be used if the station si had worse than expected occupancy) and

the node bi is the branching node for the i
th
alternative path.

Algorithm 2 Alternative path generation for station si

1: Assume fsi ≡ 1

2: Run the relabeled time-dependent planner

3: if new path is same as base path then
4: return
5: end if
6: bi ← last common node in prefix of new path and base path

7: Set the new path as an alternative path on node bi

To find such paths, we run Algorithm 2 on every station s ∈ Q .
As a result, we obtain a mapping π : V → V 2

such that

π (x) =


(si+1,−) if x = si ∧ ∄bi+1
(bi ,−) if x = si ∧ ∃bi+1

(si , ci1) if x = bi

(ci , j+1,−) if x = ci j ,

assuming that ∀i, ∃k∃p such that cik = sp (i.e., the last node of an

alternative path is a node on the base path, possibly the arrival

node ω).

Remark. Not all stations s will necessarily lead to the generation

of an alternative path because sometimes waiting is more efficient

than going elsewhere.

During runtime, a query to a server containing the real-time data

of occupancy (rto) for every station could be sent when arriving at

a branching node between the base path and an alternative path. If

the station on the base path is occupied, the online planner could

send the EV through the alternative path. This online plan execution

strategy is presented in Algorithm 3.

Algorithm 3 Online plan execution

1: procedure executePlan(π )
2: n ← α
3: while n , ω do
4: (x,y) ← π (n)
5: if y = − ∨ ¬ rto(x) then
6: n ← x
7: else
8: n ← y
9: end if
10: Move EV to node n
11: end while
12: end procedure

Remark. We assume that the occupancy of every station (occupied

or not) can be known at runtime, but not the actual waiting time

(i.e., if a waiting queue of 3 EVs is at a station, this information

cannot be known by the planner). Such an assumption is realistic

based on the current lack of available public data of the EV charging

infrastructure.
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This technique is simple, has a negligible pre-calculation over-

head (it increases the time of computation by less than 1%) and

reduces significantly the mean total journey time when compared

to relabeling without alternative paths (Section 4). While it may

seem at first that we could have simply recomputed the path at

every node during the trip using the real-time occupancy, while

having similar results, this would cause serious disadvantages. In

fact, the number of calls to the server containing the data of occu-

pancy of the charging stations network would be O(|P |), while our
approach needs to call the server only O(|Q |) times, thus giving

similar results to systematic replanning (because of the placement

of the branching node), while inducing a much lower resource

usage on the server side.

Remark. We could also use the proposed techniques to consider the

actual travel time (e.g., by considering real-time traffic information)

in addition to (or instead of) the actual waiting time. Both of our

techniques would work almost the same way with dynamic travel

time (including expected time based on historic data, like in our

first method, and real-time travel time information, like in our

second method). However, many papers already considers dynamic

traveling time, and it was not the main focus of our paper (we

wanted to focus strictly on waiting time, since it is specific to EV).

6 EVALUATION
Like it was mentionned in Section 2, the most related work is the

one of Sweda et al. [18]. However, this study does not provide an

evaluation of the proposed method using real-world data. It also

has a different formulation of the problem, with different assump-

tions, thus making it hard to make an honest comparison against

our technique (e.g., it considers that every node of the graph is a

charging station, including the departure and arrival nodes). Also,

this method generates a policy that indicates the best thing to do

when arriving at a charging station (charge there, go elsewhere,

etc.). Our alternative path technique has the advantage of consid-

ering real-time charging stations occupancy prior to arriving at a

station, thus allowing additional time saving in many situations.

For all these reasons, we don’t directly compare our techniques to

that of Sweda et al. [18].

For the evaluation of the proposed method, the baseline (Algo-

rithm 1, without the ξ labeling) was compared to the two proposed

techniques (graph relabeling and alternative path generation). The

map data (i.e., the nodes and the road segments) were taken from the

OpenStreetMap project [20]. The territory of the Québec Province

(Canada) was chosen to carry out our tests because it is vast, be-

cause the journeys between certain pairs of cities can be very long

(thus requiring a large number of recharges) and because the net-

work of charging stations is relatively well developed. The graph

generated from these data had 2 923 013 vertices and 5 907 672

edges.

The charging stations considered in the tests were real stations

from the Québec Province’s public network of EV charging stations

(called Circuit Électrique). The dataset contained 1318 charging

stations (level 2 and 3). All stations in the dataset were considered

as if they were level 3 stations because the EV planners are primarily

used for long itineraries, where fast charging is a must. Furthermore,

there was not enough level 3 charging stations currently available in

our data to test the proposed algorithm adequately using only them

(only 140 level 3 charging stations were present in our dataset).

To compare different placements and densities of stations on

the map, artificial charging stations were also generated. They

were uniformly distributed among the nodes of the map (i.e., since

big cities have more nodes than rural village, more stations were

generated there). Overall, the tests were run with, respectively, the

140 true level 3 stations, the 1318 true stations in the network, and

the artificial stations (250, 500, 1000, 2000 stations).

The fs and дs functions were constructed for every real station

(the data for the occupancy and waiting time at every day and hour)

by retrieving data on the public network’s website every 5 minutes

from December 2017 to June 2019. Since many stations have been

for now underused, a multiplicative factor on the fs was used in

the tests (1 for the true value or 2, 3 and 5 to simulate a bigger

probability of occupancy). For the artificial stations, the values

fs (d,h) were generated uniformly between 0 and 1 and the values

дs (d,h) were generated using a Kumaraswamy distribution [11]

(with the parameters 2 and 100, scaled between 1 minute and 6

hours) which gives a mean of about 31.6 minutes. This distribution

was chosen because in real life, an average EV driver stays around

30 min at a charging station but some people leave their car plugged

in for way longer, so a positive skewed distribution makes more

sense than a symmetric one.

The 1000 generated requests were composed of the departure

point α , the terminal point ω (both chosen at random from all the

nodes in the graph), the EV range ρ (generated uniformly between

90 km and 550 km, based on the minimal and maximal EV range

currently available on the market) and the day and initial hour

of departure. The requests’ optimal solution length had a high

variability, ranging from around 200 to 1500 km. All of the generated

requests necessitated at least one stop at a charging station for the

EV to be able to reach the destination (some of them necessitating

even 4 stops).

For the sake of simplicity, it was assumed in the tests that µ(e) =
90 km/h ∀e ∈ E. It was also assumed that ECT(s) = 30 min ∀s ∈ S .
In a consumer-ready planner, the level of the charging station and

the state of charge of the vehicle need to be taken into consideration,

but it was not relevant for this study (it can be easily added to our

model if needed).

Table 1 reports the results obtained by running the tests described

above. The first two columns present our main parameters: the

station network data SN (where R stands for real, and A stands for

artificial stations), and the probability modifier PM (where Rand

means that the probabilities were generated uniformly). The next

two columns, respectively, present the average waiting time (Wait)

and the total time (W+D) of the baseline. Finally, the two four-

column blocs present, respectively, the results for the relabeling

and the alternative path generation techniques. The Wait and W+R

columns have the same meaning than previously, and the WR and

TTR columns compare the technique with the baseline by showing

the difference in the waiting time (in percent) and the difference in

the average total (wait + drive) time (in minutes). Every value in

the table was rounded to one decimal.

When considering the column SN together with the two WR

and TTR columns, we observe that the increase of stations on the

map (R140 to R1318, or A250 to A500 to A1000 to A2000) leads
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Table 1: Results for 1000 journeys: considering occupation

Parameters Baseline Relabeling Alternative Paths

SN PM Wait W+D Wait W+D WR TTR Wait W+D WR TTR

min min min min % min min min % min

R140 × 1 10.2 350.1 3.3 343.9 -67.5 -6.2 2.2 342.8 -78.8 -7.2

R140 × 2 22.7 362.5 6.0 347.0 -73.6 -15.5 4.1 345.3 -82.0 -17.2

R140 × 3 37.5 377.3 7.7 349.0 -79.3 -28.3 7.2 348.5 -80.9 -28.7

R140 Rand 51.3 391.2 10.9 352.6 -78.7 -38.5 9.8 351.6 -80.9 -39.5

R1318 × 1 19.4 356.0 2.2 339.2 -88.6 -16.7 1.7 338.7 -91.5 -17.3

R1318 × 2 37.5 374.0 4.0 341.2 -89.3 -32.8 3.0 340.3 -92.0 -33.7

R1318 × 3 50.5 387.1 6.5 343.9 -87.1 -43.1 4.7 342.3 -90.6 -44.8

R1318 Rand 62.0 398.6 6.9 345.3 -88.8 -53.3 6.0 344.4 -90.4 -54.2

A250 Rand 29.3 368.2 12.0 354.2 -59.0 -13.9 10.3 353.1 -64.8 -15.1

A500 Rand 28.9 363.4 9.4 346.9 -67.6 -16.5 8.3 346.1 -71.2 -17.3

A1000 Rand 28.7 362.5 7.4 343.8 -74.2 -18.7 6.5 343.1 -77.3 -19.4

A2000 Rand 27.1 359.9 4.9 340.0 -81.9 -19.9 3.8 339.0 -86.0 -20.9

SN: Station network (where R = real and A = artificial); PM: Probability modifier;Wait: Average waiting time W+D: Average total time

(waiting + driving time)WR: Waiting time reduction (vs Baseline) TTR: Total time reduction (vs Baseline)

to a bigger decrease in both the waiting time and the total time

(for the two proposed techniques). For example, when the number

of charging stations increased from 140 to 1318, the waiting time

decreased from 67.5% to 88.6% for the relabeling technique, and

from 78.8% to 91.5% for the replanning technique. The same trend

can be observed when comparing the four sizes of artificial charging

stations network (last four rows in the table).

The augmentation of the probability of charging stations oc-

cupancy (by increasing the probability modifier PM) obviously

increased the average charging time, hence allowing a bigger re-

duction of the total journey time (as can be seen by looking at

the values of the two TTR columns when comparing rows with

different PM values).

Figures 3 and 4 shows box and whisker plots of the three tech-

niques (baseline, relabeling, alternative paths generation) respec-

tively for the R140 × 1, R1318 × 1 and A250 datasets on the former,

and the R140 × R, R1318 × R and A2000 datasets on the latter. They

show the minimum, first quartile, median, third quartile and maxi-

mum of the total journey time (in seconds). While the alternative

paths technique doesn’t allow a significant median time reduction,

it decreased significantly the maximum time on all datasets.

Overall, the waiting time reduction, together with the negligible

increase of the driving time, allowed a significant decrease of the

total EV trip time. These results apply not only to our specific

real charging stations data, but also to artificially generated data,

including stations, probabilities of occupancy and waiting times,

suggesting that the observed trends are characteristic for many EV

stations disposition, density and occupancy scenarios.

7 CONCLUSION
In this paper, we proposed to extend current EV path-planning

techniques to consider the waiting time at charging stations in the

total cost function of an EV trip.We did so in two different ways. The

first technique is a dynamic time-dependent graph relabeling that

adds an artificial cost to every out-edge of every charging station

to let the planner account for the average waiting and charging

time at the station at a specific moment (hour and day). The second

technique is a contingency generation technique that precomputes

alternative paths in case a station where we planned to recharge

is occupied prior to arriving to it, despite the historic data. The

complete planner that includes the two described techniques is an

efficient O(n logn) planner.
Our results show that the first technique gave impressive results

on average for the 1000 EV trips used in our tests, dropping by

more than 3/4 the waiting time while having a negligible increase

in the driving time. Overall, the mean total trip time decreased by

17.3 minutes when using the real data of stations placement and

occupancy. The second technique was tested on top of the first, and

further amplified the results (though to a lesser extent). It helped to

reduce the waiting time of some requests which were not effectively

processed by the first technique.

The waiting time reduction provided by our techniques was

generally proportional to the density of charging stations on the

map (the more stations were on the map, the more the waiting time

was reduced) and to the probability of the station occupancy. This

indicates that the effectiveness of our method will increase with the

increase in the number of charging stations on the map (currently,

new charging stations are installed faster and faster [17]) and the
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Figure 3: Box plots showing the five number summary of the total time
B: Baseline; R: Relabeling; A: Alternative paths.
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Figure 4: Box plots showing the five number summary of the total time
B: Baseline; R: Relabeling; A: Alternative paths.
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increase of the EV on the road (the number of EV also increases

worldwide [15]).

While the graph relabeling and alternative path generation mod-

els are important, a good probabilistic model to estimate the global

demand is also needed. Currently, we have access to real-time oc-

cupancy data for charging stations which are part of our station

network. The presence/absence of waiting queues, allowing an es-

timation of the waiting time at these stations, is not available so

far. However, when it becomes available, this information can be

easily incorporated into our techniques.

As future work, we plan to develop an EV charging stations

reservation system together with an online EV planner that will

consider the EV stations reservation by the other EV drivers when

determining the optimal path.
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