pcTVI: Parallel MDP Solver Using a Decomposition Into Independent Chains

Tuesday, 19 Jul 2022·
Jaël Champagne Gareau
Jaël Champagne Gareau
,
Éric Beaudry
,
Vladimir Makarenkov
Abstract
Markov Decision Processes (MDPs) are useful to solve real-world probabilistic planning problems. However, finding an optimal solution in an MDP can take an unreasonable amount of time when the number of states in the MDP is large. In this paper, we present a way to decompose an MDP into Strongly Connected Components (SCCs) and to find dependency chains for these SCCs. We then propose a variant of the Topological Value Iteration (TVI) algorithm, called parallel chained TVI (pcTVI), which is able to solve independent chains of SCCs in parallel leveraging modern multicore computer architectures. The performance of our algorithm was measured by comparing it to the baseline TVI algorithm on a new probabilistic planning domain introduced in this study. Our pcTVI algorithm led to a speedup factor of 20, compared to traditional TVI (on a computer having 32 cores).
Type
Publication
Proceedings of the International Federation of Classification Societies Conference
publications
Jaël Champagne Gareau
Authors
Postdoctoral Researcher in Computer Science
I am currently a postdoctoral researcher in computer science at Université TÉLUQ, where my research focuses on speeding up the conversion of integer and floating-point numbers into decimal strings. During my doctoral studies, I designed algorithms and data structures that leverage modern computer architectures to solve large instances of Markov decision processes (MDPs). In my master’s research, I developed routing algorithms for electric vehicles aimed at determining the optimal path between two points while minimizing travel time (including driving, charging, and expected waiting time at charging stations).

Citation