A Fast Electric Vehicle Path-Planner Using Clustering

Monday, 26 Aug 2019·
Jaël Champagne Gareau
Jaël Champagne Gareau
,
Éric Beaudry
,
Vladimir Makarenkov
Abstract
Over the past few years, several studies have considered the problem of Electric Vehicle Path Planning with intermediate recharge (EVPP-R) that consists of finding the shortest path between two given points by traveling through one or many charging stations, without exceeding the vehicle’s range. Unfortunately, the exact solution to this problem has a high computational cost. Therefore, speedup techniques are generally necessary (e.g., contraction hierarchies). In this paper, we propose and evaluate a new fast and intuitive graph clustering technique, which is applied on a real map with charging station data. We show that by grouping nearby stations, we can reduce the number of stations considered by a factor of 13 and increase the speed of computation by a factor of 35, while having a very limited trade-off increase, of less than 1%, on the average journey duration time.
Type
Publication
Proceedings of the International Federation of Classification Societies Conference
publications
Jaël Champagne Gareau
Authors
Postdoctoral Researcher in Computer Science
I am currently a postdoctoral researcher in computer science at Université TÉLUQ, where my research focuses on speeding up the conversion of integer and floating-point numbers into decimal strings. During my doctoral studies, I designed algorithms and data structures that leverage modern computer architectures to solve large instances of Markov decision processes (MDPs). In my master’s research, I developed routing algorithms for electric vehicles aimed at determining the optimal path between two points while minimizing travel time (including driving, charging, and expected waiting time at charging stations).

Citation