Fast and Optimal Planner for the Discrete Grid-Based Coverage Path-Planning Problem

Thursday, 25 Nov 2021·
Jaël Champagne Gareau
Jaël Champagne Gareau
,
Éric Beaudry
,
Vladimir Makarenkov
Abstract
This paper introduces a new algorithm for solving the discrete grid-based coverage path-planning (CPP) problem. This problem consists in finding a path that covers a given region completely. Our algorithm is based on an iterative deepening depth-first search. We introduce two branch-and-bound improvements (Loop detection and Admissible heuristic) to this algorithm. We evaluate the performance of our planner using four types of generated grids. The obtained results show that the proposed branch-and-bound algorithm solves the problem optimally and orders of magnitude faster than traditional optimal CPP planners.
Type
Publication
Intelligent Data Engineering and Automated Learning
publications
Jaël Champagne Gareau
Authors
Postdoctoral Researcher in Computer Science
I am currently a postdoctoral researcher in computer science at Université TÉLUQ, where my research focuses on speeding up the conversion of integer and floating-point numbers into decimal strings. During my doctoral studies, I designed algorithms and data structures that leverage modern computer architectures to solve large instances of Markov decision processes (MDPs). In my master’s research, I developed routing algorithms for electric vehicles aimed at determining the optimal path between two points while minimizing travel time (including driving, charging, and expected waiting time at charging stations).

Citation