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Context : Markov Decision Processes (MDPs)

Markov Decision Processes (MDPs) are a technique used to model
decision-making problems under uncertain outcomes.

The model aims to represent the states, actions and goals of a world state, in
order to find the best policy for a given agent to reach a goal.
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Context : MDPs Algorithms

Objective

Find a policy π : S → A that minimizes the expected total cost to reach a goal.

Classical algorithms

Value Iteration (VI) 1

Policy Iteration (PI) 2

Prioritization methods

Generalized Prioritized Sweeping (genPS) 3

Partitioned, Prioritized, Parallel Value Iteration (P3VI) 4

1. Bellman, R. (1957). Dynamic Programming. Prentice Hall.
2. Howard, R. A. (1960). Dynamic Programming and Markov Processes. John Wiley.
3. Andre, D. et al. (1998). Generalized prioritized sweeping. Proceedings of the 10th International Conference on

Neural Information Processing Systems (p. 1001-1007). MIT Press.
4. Wingate, D. and Seppi, K. D. (2005). Prioritization methods for accelerating MDP solvers. Journal of Machine

Learning Research, 6, 851-881.
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Context : MDPs Algorithms

Objective

Find a policy π : S → A that minimizes the expected total cost to reach a goal.

Heuristic approaches

Labeled Real-Time Dynamic Programming (LRTDP) 5

Improved Looped And/Or* (ILAO*) 6

Topological approaches

Topological Value Iteration (TVI) 7

Parallel-Chained Topological Value Iteration (pcTVI) 8

5. Bonet, B. and Geffner, H. (2003). Improving the Convergence of Real-Time Dynamic Programming. Proceedings
of the 13th International Conference on Automated Planning and Scheduling (ICAPS 2003) (vol. 3, p. 12-21).
6. Hansen, E. A. and Zilberstein, S. (2001). LAO* : A heuristic search algorithm that finds solutions with loops.

Artificial Intelligence, 129(1-2), 35-62.
7. Dai, P. et al. (2011). Topological value iteration algorithms. Journal of Artificial Intelligence Research, 42,

181-209.
8. Champagne Gareau, J. et al. (2023). pcTVI : Parallel MDP solver using a decomposition into independent

chains. Classification and data science in the digital age (p. 101-109). Springer International Publishing.
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Motivation : Given a certain planning domain, which algorithm is faster?

Experts creating MDP domains for real-world uses cases needs to know which
approach can find the optimal policy in a given time-frame.

Which MDP solver are optimal for planning domains?
For certain domains, we already know the answer :

Dense MDPs (actions can lead to a large set of states) : VI and PI are often the best ;
MDPs having a large number of goal states : heuristic approaches are often the best.
MDPs having a large number of strongly connected components : topological
approaches are often the best.

Table – Running times (ms) obtained for two different MDP solvers for two simple domains.

Name n VI LRTDP

linearUniDir 10 000 000 2 594 650 564
denseProb 10 000 196 211 684 211
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Which algorithm is faster

What if we have a combination of the above features?

Is there a possible policy that could be used to select the optimal algorithm for a
given MDP?

What are the possible distinctive features that can be extracted from an MDP?

To solve this issue, we can try to describe a MDP domain in classifiable variables.
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Features of interest

The number of states |S| in the MDP, O(1).

The number of actions |A| in the MDP, O(1).

The number of goal states |G| in the MDP, O(1).

The number of Strongly Connected Components (SCCs) |S| in the MDP,
computed by Tarjan’s algorithm : O(|S|+ |A|).
The number of states in the largest SCC maxS∈S |S|.
The distribution of actions, O(|S|) :
∀k ,Pa

k := proportion of states which have k applicable actions.

The distribution of probabilistic transitions, O(A) :
∀k ,P t

k := proportion of actions which have k probabilistic transitions.

The clustering coefficient : C := 1
|S|

∑
s∈S

es
ks(ks−1) , where es is the number of

pairs of states directly reachable from s that are also directly reachable from each
other, and ks is the number of states directly reachable from s. Moreover, C is set
to be 0 when ks < 2, O(|S|3).
The goals-eccentricity of the MDP : G := ming∈G maxs∈S d̄(s, g), where d̄(s, g)
is the minimum number of actions (the cost of each action is not considered) that
must be executed to reach g from s, O(|G|(|S| log |S|+ |A|)).
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Synthetic Graphs Generation

To categorize the topological features descriptive of the richness, a high amount of
distinct MDPs are needed.
A small number of synthetic MDP planning domains exist that can be used, but
are limited in possible edge-cases generation e.g. :

Layered MDPs (used to control the number of SCCs) ;
Chained MDPs (used to control the number of independent chains of states).

To better represent distinct MDP cases, there are a lot more synthetic graph
generation methods that can be modified to generate MDP planning domains 9.

Technique Degrees Distr. Clust. Coeff. Diameter

Erdös-Rényi Binomial small (k̄/n) small : O(log(n))
Watts-Strogatz Almost-constant large small
Barabási–Albert Scale-free (k̄−3) large (k̄−1) small : O( log(n)

log(log(n)) )

Kronecker Multinomial flexible flexible

9. Champagne Gareau, J., Beaudry, É. and Makarenkov, V. (2024). Towards topologically diverse probabilistic
planning benchmarks : Synthetic domain generation for markov decision processes. In : J. Trejos, T. Chadjipadelis,
A. Grané and V. Mario (dir.), Data science, classification and artificial intelligence for modeling decision making (p.
63-70). Springer International Publishing.
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Solver classification and topological features as characteristics

Classical algorithms in Artificial Intelligence can be used to represent the links
between topological features and the optimal MDP resolution algorithm, such as
SVM or Neural-Networks.

The need to represent explicitly the importance of each topological features over
each of the algorithms makes it a necessity to avoid black-boxes approaches.

Explainable AI methods can be used to extract the topological/solver
correspondances for domains experts to help them select the best methods for
their use-cases.
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Explainable AI approaches

Interpretable models
Offers intrinsic explanations throught human-understandable structures.
Scale well for domains with information-rich, few-features set.

Post-hoc methods
Algorithms to derive post-hoc explanations of models decisions.
Some of them enable “what-if” reasoning by creating approximate explanations that can
be adapted and modified, such as counter-factuals explanations.

Figure – Source : Yu-Liang Chou, Catarina Moreira, Peter Bruza, Chun Ouyang, Joaquim Jorge, Counterfactuals and
causability in explainable artificial intelligence : Theory, algorithms, and applications, Information Fusion,
2022
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Goal and planning domain

Goal : Systematically analyze the impacts of MDP topological features to describe
their domain, and to select which algorithms is best adapted to offert an optimal
policy.

MDP domains

Layered domain

WetFloor

Single-Armed Pendulum (SAP)
Synthetic domains

Erdös-Rényi
Barabási-Albert
Watts-Strogatz
Kronecker
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Features set and Classes

MDP Solvers

Value Iteration

LRTDP

ILAO*

Topological Value Iteration

Each MDP domain was sent as input to MDP solvers, in order to extract the
optimal solution generation time.
This value was used to classify which solver was categorized as the fastest.

Table – Running times (ms) obtained for each solvers on the tested domains. Fastest time on each domain is bolded.

Name n VI LRTDP ILAO* TVI

linearUniDir 10 000 000 2 594 650 564 16 912 088 497
linearBidirDet 100 000 1 577 974 9 >1h 1 721 993
linearBidirProb 130 983 4 579 2 885 982
denseDet 10 000 1 660 0.1 0.1 1 825
denseProb 10 000 196 211 684 211 676 912 208 256
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Training info

Classification and features analysis algorithms

Global classifier (LightGBM) predicts the fastest solver.

Solver-specific classifiers (Iterative Random Forests) predict runtime distributions
for individual solvers.

Features impurities values generated for solver-specific classifiers, to extract
features-specific importances for each class of MDP domains. Counter-factual
explanations are generated for instances testing, to give greater assurances to the
user.
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Traning info - Dataset

Table – MDP Models used for the classifier training

Name Number of instances

Erdös-Rényi 1614
Barabási-Albert 1989
Watts-Strogatz (SmallWorld) 1968
Kronecker 1448

Layered 880
WetFloor 200
Single-Armed Pendulum (SAP) 91
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Results – Global classifier Confusion Matrix

VI LRTDP ILAOstar TVI
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Results – Individual classifier : ILAO* explanation tree

avgNumActions <= 9.887
gini = 0.562

samples = 6081
value = [0.083, 0.597, 0.268, 0.052]

SCC <= 82121.5
gini = 0.668

samples = 633
value = [0.084, 0.403, 0.133, 0.38]

True

Largest SCC <= 15276.5
gini = 0.528

samples = 5448
value = [0.083, 0.62, 0.283, 0.014]

False

gini = 0.649
samples = 401

value = [0.122, 0.262, 0.113, 0.504]

gini = 0.521
samples = 232

value = [0.018, 0.647, 0.168, 0.167]

gini = 0.418
samples = 2118

value = [0.074, 0.741, 0.162, 0.024]

Goals Ratio <= 0.244
gini = 0.567

samples = 3330
value = [0.089, 0.543, 0.36, 0.008]

avgNumEffects <= 5.497
gini = 0.479

samples = 1071
value = [0.102, 0.687, 0.195, 0.017]

Goals excentricity <= 2.5
gini = 0.575

samples = 2259
value = [0.082, 0.475, 0.439, 0.004]

gini = 0.448
samples = 1013

value = [0.083, 0.709, 0.205, 0.003]

gini = 0.661
samples = 58

value = [0.428, 0.296, 0.019, 0.256]

gini = 0.575
samples = 1580

value = [0.09, 0.415, 0.495, 0.0]

gini = 0.521
samples = 679

value = [0.063, 0.615, 0.309, 0.012]
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Results – Features analysis

Topological features per global importances :

1 State Count

2 Goals Density

3 Max SCC Size

4 Goal Eccentricity

5 Avg Stochasticity

6 Clustering Coefficient

7 Actions Density

8 SCC Count

Figure – Features importance per individual solver
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Conclusion

We used state of the arts topological MDP features with synthetic data generation
to create a training corpus for MDP domains

We proposed a method to classify MDP algorithms per topological features, and
analyzed each features importances for each family of approaches

As future work, we plan to create a bigger corpus with more variations for MDPs to
even out the MDP solver fastest instances.
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